Using self-organizing map to develop a
probabilistic tflood early warning system based
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The frequency and intensity of hazardous weather events have increased year by year under climate change. For flood early warning,
radar echo 1s adopted to improve the spatial resolution of early warning system, and an un-supervised neural network 1s applied to
develop a probabilistic flood early warning system (PFEWS) for village scale 1n this study. To develop the PFEWS, this research
collected real-time radar echo maps and historical rainfall data in the flood-prone area of Taipei City, Zhonghua village in Songshan
District, from 2014 to 2018. Then the study used a neural network (Self-organizing map, SOM) to establish the relationship between
the three-dimensional space radar echo data of the study area and the actual rainfall observations. Additionally, the probabilistic
rainfall range could be carried out 1in each topological map. The PFEWS based on SOM and radar echo could provide a probabilistic
flood warning message with enhanced spatial resolution for CERTs to adopt preventive measures.
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The corresponding average hourly rainfall(left) vs. Ranking average rainfall from No.1 to No.900(right)
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Conclusion

 The difference between the existing and the proposed SOM-based models 1s the pre-analysis process of three-dimensional space radar echo
data. The proposed model 1s established on the basis of SOM via analyzing historical data to extract data with specific properties, which can
provide helpful information for flood forecasts.

 The extracted data and the raw observed events are used to construct SOM for improving the long lead time forecasting. The result confirms
that incorporating data with specific properties from SOM topological map certainly improves real-time forecasting performance.

* Development of a probabilistic flood early warning system. The performance of the proposed model for extreme events 1s highlighted to
estimate the applicability of the proposed model. The result shows study areas early warning before the occurrence of warning and flooding
disasters, the rainfall characteristics of different grid features, and the corresponding rainfall range and rainfall frequency.



